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Taking inspiration from forecasting

Weather forecasters started thinking about calibration a long time ago (Brier, 1950).
I A forecast ‘70% chance of rain’ should be followed by rain 70% of the time.

This is immediately applicable to binary classification:
I A prediction ‘70% chance of spam’ should be spam 70% of the time.

and to multi-class classification:
I A prediction ‘70% chance of setosa, 10% chance of versicolor and 20% chance of

virginica’ should be setosa/versicolor/virginica 70/10/20% of the time.

In general:
I A predicted probability (vector) should match empirical (observed) probabilities.

Q: What does ‘x% of the time’ mean?
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Forecasting example

Let’s consider a small toy example:
I Two predictions of ‘10% chance of rain’ were both followed by ‘no rain’.

I Two predictions of ‘40% chance of rain’ were once followed by ‘no rain’, and once
by ‘rain’.

I Three predictions of ‘70% chance of rain’ were once followed by ‘no rain’, and
twice by ‘rain’.

I One prediction of ‘90% chance of rain’ was followed by ‘rain’.

Q: Is this forecaster well-calibrated?
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Over- and under-estimates

p̂ y

0 0.1 0
1 0.1 0

2 0.4 0
3 0.4 1

4 0.7 0
5 0.7 1
6 0.7 1

7 0.9 1

This forecaster is doing a pretty decent job:
I ‘10%’ chance of rain’ was a slight over-estimate

(ȳ = 0/2 = 0%);
I ‘40%’ chance of rain’ was a slight under-estimate

(ȳ = 1/2 = 50%);
I ‘70%’ chance of rain’ was a slight over-estimate

(ȳ = 2/3 = 67%);
I ‘90%’ chance of rain’ was a slight under-estimate

(ȳ = 1/1 = 100%).

6 / 37



Visualising forecasts: the reliability diagram

p̂ y

0 0.1 0
1 0.1 0

2 0.4 0
3 0.4 1

4 0.7 0
5 0.7 1
6 0.7 1

7 0.9 1
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Changing the numbers slightly

p̂ y

0 0.1 0
1 0.2 0

2 0.3 0
3 0.4 1

4 0.6 0
5 0.7 1
6 0.8 1

7 0.9 1
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Or should we group forecasts differently?

p̂ y

0 0.1 0
1 0.2 0
2 0.3 0
3 0.4 1

4 0.6 0
5 0.7 1
6 0.8 1
7 0.9 1
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Or not at all?

p̂ y

0 0.1 0

1 0.2 0

2 0.3 0

3 0.4 1

4 0.6 0

5 0.7 1

6 0.8 1

7 0.9 1
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Binning or pooling predictions is a fundamental notion

We need bins to evaluate the degree of calibration:
I In order to decide whether a weather forecaster is well-calibrated, we need to look

at a good number of forecasts, say over one year.
I We also need to make sure that there are a reasonable number of forecasts for

separate probability values, so we can obtain reliable empirical estimates.
I Trade-off: large bins give better empirical estimates, small bins allows a more

fine-grained assessment of calibration.

But adjusting forecasts in groups also gives rise to practical calibration methods:
I empirical binning
I isotonic regression (aka ROC convex hull)
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Why are we interested in calibration?

To calibrate means to employ a known scale with known properties.
I E.g., additive scale with a well-defined zero, so that ratios are meaningful.

For classifiers we want to use the probability scale, so that we can
I justifiably use default decision rules (e.g., maximum posterior probability);
I adjust these decision rules in a straightforward way to account for different class

priors or misclassification costs;
I combine probability estimates in a well-founded way.

Q: Is the probability scale additive?
Q: How would you combine probability estimates from several well-calibrated models?
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Optimal decisions I

Denote the cost of predicting class j for an instance of true class i as C(Ŷ = j|Y = i).
The expected cost of predicting class j for instance x is

C(Ŷ = j|X = x) =
∑

i

P(Y = i|X = x)C(Ŷ = j|Y = i)

where P(Y = i|X = x) is the probability of instance x having true class i (as would be
given by the Bayes-optimal classifier).
The optimal decision is then to predict the class with lowest expected cost:

Ŷ ∗ = argmin
j

C(Ŷ = j|X = x) = arg min
j

∑

i

P(Y = i|X = x)C(Ŷ = j|Y = i)
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Optimal decisions II

In binary classification we have:

C(Ŷ = +|X = x) = P(+|x)C(+|+) +
(
1− P(+|x)

)
C(+|−)

C(Ŷ = −|X = x) = P(+|x)C(−|+) +
(
1− P(+|x)

)
C(−|−)

On the optimal decision boundary these two expected costs are equal, which gives

P(+|x) =
C(+|−)− C(−|−)

C(+|−)− C(−|−) + C(−|+)− C(+|+)
, c

This gives the optimal threshold on the hypothetical Bayes-optimal probabilities.
It is also the best thing to do in practice – as long as the probabilities are
well-calibrated!
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Optimal decisions III

Without loss of generality we can set the cost of true positives and true negatives to
zero; c = cFP

cFP+cFN
is then the cost of a false positive in proportion to the combined cost

of one false positive and one false negative.
I E.g., if false positives are 4 times as costly as false negatives then we set the

decision threshold to 4/(4 + 1) = 0.8 in order to only make positive predictions if
we’re pretty certain.

Similar reasoning applies to changes in class priors:
I if we trained on balanced classes but want to deploy with 4 times as many

positives compared to negatives, we lower the decision threshold to 0.2;
I more generally, if we trained for class ratio r and deploy for class ratio r ′ we set

the decision threshold to r/(r + r ′).

Cost and class prior changes can be combined in the obvious way.
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Common sources of miscalibration

Underconfidence: a classifier thinks it’s worse at separating classes than it actually
is.
I Hence we need to pull predicted probabilities away from the centre.

Overconfidence: a classifier thinks it’s better at separating classes than it actually is.
I Hence we need to push predicted probabilities toward the centre.

A classifier can be overconfident for one class and underconfident for the other, in
which case all predicted probabilities need to be increased or decreased.
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Underconfidence example

I Underconfidence typically gives sigmoidal
distortions.

I To calibrate these means to pull predicted
probabilities away from the centre.

Predicting Good Probabilities With Supervised Learning

 0

 0.05

 0.1

 0.15

 0.2

 0.25
COV_TYPE ADULT LETTER.P1 LETTER.P2 MEDIS SLAC HS

 0

 0.05

 0.1

 0.15

 0.2

 0.25
MG

 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

ct
io

n
 o

f 
P

o
si

tiv
e

s

 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

ct
io

n
 o

f 
P

o
si

tiv
e

s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ra

ct
io

n
 o

f 
P

o
si

tiv
e

s

Mean Predicted Value
 0  0.2  0.4  0.6  0.8  1

Mean Predicted Value
 0  0.2  0.4  0.6  0.8  1

Mean Predicted Value
 0  0.2  0.4  0.6  0.8  1

Mean Predicted Value
 0  0.2  0.4  0.6  0.8  1

Mean Predicted Value
 0  0.2  0.4  0.6  0.8  1

Mean Predicted Value
 0  0.2  0.4  0.6  0.8  1

Mean Predicted Value
 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

ct
io

n
 o

f 
P

o
si

tiv
e

s

Mean Predicted Value

Figure 1. Histograms of predicted values and reliability diagrams for boosted decision trees.
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Figure 2. Histograms of predicted values and reliability diagrams for boosted trees calibrated with Platt’s method.
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Figure 3. Histograms of predicted values and reliability diagrams for boosted trees calibrated with Isotonic Regression.

ture of the problems. For example, we could conclude that
the LETTER and HS problems, given the available fea-
tures, have well defined classes with a small number of
cases in the “gray” region, while in the SLAC problem the
two classes have high overlap with significant uncertainty
for most cases. It is interesting to note that neural networks
with a single sigmoid output unit can be viewed as a linear
classifier (in the span of it’s hidden units) with a sigmoid
at the output that calibrates the predictions. In this respect

neural nets are similar to SVMs and boosted trees after they
have been calibrated using Platt’s method.

Examining the histograms and reliability diagrams for lo-
gistic regression and bagged trees shows that they be-
have similar to neural nets. Both learning algorithms are
well calibrated initially and post-calibration does not help
them on most problems. Bagged trees are helped a little
by post-calibration on the MEDIS and LETTER.P2 prob-
lems. While it is not surprising that logistic regression pre-

Source: (Niculescu-Mizil and
Caruana, 2005)
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Overconfidence example

I Overconfidence is very common, and
usually a consequence of over-counting
evidence.

I Here, distortions are inverse-sigmoidal
I Calibrating these means to push predicted

probabilities toward the centre.

Predicting Good Probabilities With Supervised Learning
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Figure 6. Histograms and reliability diagrams for SLAC.

ates reliability plots that have an inverted sigmoid shape.
While Platt Scaling is still helping to improve calibration,
it is clear that a sigmoid is not the right transformation to
calibrate Naive Bayes models. Isotonic Regression is a bet-
ter choice to calibrate these models.

Returning to Figure 6, we see that the histograms of the pre-
dicted values before calibration (first column) from the ten
different models display wide variation. The max margin
methods (SVM, boosted trees, and boosted stumps) have
the predicted values massed in the center of the histograms,
causing a sigmoidal shape in the reliability plots. Both
Platt Scaling and Isotonic Regression are effective at fitting
this sigmoidal shape. After calibration the prediction his-
tograms extend further into the tails near predicted values
of 0 and 1.

For methods that are well calibrated (neural nets, bagged
trees, random forests, and logistic regression), calibration
with Platt Scaling actually moves probability mass away
from 0 and 1. It is clear from looking at the reliability di-
agrams for these methods that the sigmoid has difficulty
fitting the predictions in the tails of these well-calibrated
methods.

Overall, if one examines the probability histograms before
and after calibration, it is clear that the histograms are much
more similar to each other after Platt Scaling. Calibration
significantly reduces the differences between the probabil-
ities predicted by the different models. Of course, calibra-
tion is unable to fully correct the predictions from the infe-
rior models such as decision trees and naive bayes.

5. Learning Curve Analysis
In this section we present a learning curve analysis of the
two calibration methods, Platt Scaling and Isotonic Regres-
sion. The goal is to determine how effective these calibra-
tion methods are as the amount of data available for cali-
bration varies. For this analysis we use the same models as
in Section 4, but here we vary the size of the calibration set
from 32 cases to 8192 cases by factors of two. To measure
calibration performance we examine the squared error of
the models.

The plots in Figure 7 show the average squared error over
the eight test problems. For each problem, we perform ten
trials. Error bars are shown on the plots, but are so nar-
row that they may be difficult to see. Calibration learning
curves are shown for nine of the ten learning methods (de-
cision trees are left out).

The nearly horizontal lines in the graphs show the squared
error prior to calibration. These lines are not perfectly
horizontal only because the test sets change as more data
is moved into the calibration sets. Each plot shows the
squared error after calibration with Platt’s method or Iso-
tonic Regression as the size of the calibration set varies
from small to large. When the calibration set is small (less
than about 200-1000 cases), Platt Scaling outperforms Iso-
tonic Regression with all nine learning methods. This hap-
pens because Isotonic Regression is less constrained than

Source: (Niculescu-Mizil and
Caruana, 2005)
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A first look at some calibration techniques

Parametric calibration involves modelling the score distributions within each class.
I Platt scaling = Logistic calibration can be derived by assuming that

the scores within both classes are normally distributed with the
same variance (Platt, 2000).

I Beta calibration employs Beta distributions instead, to deal with
scores already on a [0, 1] scale (Kull et al., 2017).

I Dirichlet calibration for more than two classes (Kull et al., 2019).

Non-parametric calibration often ignores scores and employs ranks instead.
I E.g., isotonic regression = pool adjacent violators = ROC convex

hull (Zadrozny and Elkan, 2001; Fawcett and Niculescu-Mizil, 2007).

These techniques will be more fully discussed in Part III of the tutorial.
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Platt scaling

BETA CALIBRATION
MEELIS KULL, TELMO M. SILVA FILHO AND PETER FLACH

meelis.kull@ut.ee, tmsf@cin.ufpe.br, peter.flach@bristol.ac.uk

CALIBRATED CLASSIFIER
A binary classifier is calibrated, if:

• it outputs a probability of the instance to be
positive instead of outputting a class label;

• and that probability is calibrated, i.e. it is
equal to the proportion of positives among
all instances with the same predicted prob-
ability;

WORKS FOR ANY COST CONTEXT
The same calibrated classifier works for any false
positive and false negative cost context without
retraining:

1. Learn a calibrated classifier;

2. Apply the classifier on the given test in-
stance to obtain an estimate p̂ of its proba-
bility to be positive;

3. Determine the costs cFP and cFN per false
positive and false negative;

4. Predict positive if p̂ > cFP /(cFP +cFN ), oth-
erwise predict negative.

Prediction and cost-sensitive decision making
have been separated. This is required when
the misclassification costs are not known during
model training.

CLASSIFIER CALIBRATION
If the classifier outputs non-calibrated probabili-
ties or any real-valued scores, then it can still be
calibrated:

1. Learn a calibration map µ from classifier
outputs to calibrated probabilities;

2. Apply the classifier on the given test in-
stance to obtain the non-calibrated score s;

3. Remap the score into a calibrated probabil-
ity p̂ = µ(s).

LOGISTIC CALIBRATION
• Also known as Platt scaling [Platt 2000]

• Fits a parametric family with 2 parameters:

µlogistic(s; �, �) =
1

1 + 1 /(e�·s+�)

• Family contains only sigmoids.

• Logistic calibration is perfect if the class-
conditional score densities f� and f+ are Gaus-
sian with equal variance.
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• Easily implemented by fitting logistic regres-
sion on the single feature s.

BETA CALIBRATION
• Our novel contribution.

• Fits a parametric family with 3 parameters:

µbeta(s; a, b, c) =
1

1 + 1
.⇣

ec sa

(1�s)b

⌘

• Sigmoids, inverse sigmoids, identity and more.

• Beta calibration is perfect if the class-
conditional score densities f� and f+ are
beta distributions.
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• Easily implemented by fitting logistic regres-
sion on two features ln(s) and � ln(1 � s).

BETA CALIBRATION FAMILY
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SCORE HISTOGRAMS AND CALIBRATION MAPS (ADA-O)

German Diabetes Landsat Tic-tac Vowel

EXPERIMENTS ON 41 DATASETS (LOG-LOSS)
CD

beta
logistic

uncalibrated
isotonic

1 2 3 4

CD

beta
logistic
isotonic

uncalibrated

1 2 3 4

CD

beta
logistic
isotonic

uncalibrated

1 2 3 4

Ada-O (p-value=1.01e�12) Naive Bayes (p-value=6.88e�17) Ada-S (p-value=4.73e�15)

TAKE HOME MESSAGES
Beta calibration:

• Well-founded: derived from beta distribution;

• Easily-implemented: logistic regression after
log-transform;

• Better calibrated probabilities than from lo-
gistic in our experiments on 3 model classes.

CODE AND PACKAGES

The source code for experi-
ments, beta calibration pack-
ages for Python and R and tu-
torials for both languages:

https://betacal.github.io

ACKNOWLEDGEMENTS
We were supported by the SPHERE Interdisciplinary Research
Collaboration, funded by the UK Engineering and Physical
Sciences Research Council under grant EP/K031910/1. TSF
was financially supported by CNPq (Brazilian National Coun-
cil for Scientific and Technological Development).

MULTICLASS?
Dirichlet calibration is the upcoming general-

isation to multi-class classifier calibration avail-
able at https://dircal.github.io

p(s; w ,m) =
1

1 + exp(−w(s −m))

w = (µpos − µneg)/σ2,m = (µpos + µneg)/2
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Beta calibration

BETA CALIBRATION
MEELIS KULL, TELMO M. SILVA FILHO AND PETER FLACH

meelis.kull@ut.ee, tmsf@cin.ufpe.br, peter.flach@bristol.ac.uk
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• it outputs a probability of the instance to be
positive instead of outputting a class label;

• and that probability is calibrated, i.e. it is
equal to the proportion of positives among
all instances with the same predicted prob-
ability;

WORKS FOR ANY COST CONTEXT
The same calibrated classifier works for any false
positive and false negative cost context without
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1. Learn a calibrated classifier;

2. Apply the classifier on the given test in-
stance to obtain an estimate p̂ of its proba-
bility to be positive;

3. Determine the costs cFP and cFN per false
positive and false negative;

4. Predict positive if p̂ > cFP /(cFP +cFN ), oth-
erwise predict negative.

Prediction and cost-sensitive decision making
have been separated. This is required when
the misclassification costs are not known during
model training.

CLASSIFIER CALIBRATION
If the classifier outputs non-calibrated probabili-
ties or any real-valued scores, then it can still be
calibrated:

1. Learn a calibration map µ from classifier
outputs to calibrated probabilities;

2. Apply the classifier on the given test in-
stance to obtain the non-calibrated score s;

3. Remap the score into a calibrated probabil-
ity p̂ = µ(s).

LOGISTIC CALIBRATION
• Also known as Platt scaling [Platt 2000]

• Fits a parametric family with 2 parameters:

µlogistic(s; �, �) =
1
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TAKE HOME MESSAGES
Beta calibration:

• Well-founded: derived from beta distribution;

• Easily-implemented: logistic regression after
log-transform;

• Better calibrated probabilities than from lo-
gistic in our experiments on 3 model classes.

CODE AND PACKAGES

The source code for experi-
ments, beta calibration pack-
ages for Python and R and tu-
torials for both languages:

https://betacal.github.io
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MULTICLASS?
Dirichlet calibration is the upcoming general-

isation to multi-class classifier calibration avail-
able at https://dircal.github.io

p(s; a, b, c) =
1

1 + exp(−a ln s − b ln(1− s)− c)

a = αpos − αneg, b = βneg − βpos
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Isotonic regression
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What’s so special about multi-class calibration?

Similar to classification, some methods are inherently multi-class but most are not.

This leads to (at least) three different ways of defining what it means to be fully
multiclass-calibrated.
I Many recent papers use the (weak) notion of confidence calibration.

Evaluating multi-class calibration is in its full generality still an open problem.
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Definitions of calibration for more than two classes

The following definitions of calibration are equivalent for binary classification but
increasingly stronger for more than two classes:

Confidence calibration: only consider the highest predicted probability.

Class-wise calibration: only consider marginal probabilities.

Multi-class calibration: consider the entire vector of predicted probabilities.
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Confidence calibration

This was proposed by (Guo et al., 2017), requiring that among all instances where the
probability of the most likely class is predicted to be c, the expected accuracy is c.
(We call this ‘confidence calibration’ to distinguish it from the stronger notions of
calibration.)

Formally, a probabilistic classifier p̂ : X → ∆k is confidence-calibrated, if for any
confidence level c ∈ [0, 1], the actual proportion of the predicted class, among all
possible instances x being predicted this class with confidence c, is equal to c:

P(Y = i | p̂i(x) = c) = c where i = argmax
j

p̂j(x).
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Class-wise calibration

Originally proposed by (Zadrozny and Elkan, 2002), this requires that all one-vs-rest
probability estimators obtained from the original multiclass model are calibrated.

Formally, a probabilistic classifier p̂ : X → ∆k is classwise-calibrated, if for any class
i and any predicted probability qi for this class, the actual proportion of class i , among
all possible instances x getting the same prediction p̂i(x) = qi , is equal to qi :

P(Y = i | p̂i(x) = qi) = qi for i = 1, . . . , k .
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Multi-class calibration

This is the strongest form of calibration for multiple classes, subsuming the previous
two definitions.

A probabilistic classifier p̂ : X → ∆k is multiclass-calibrated if for any prediction
vector q = (q1, . . . , qk ) ∈ ∆k , the proportions of classes among all possible instances
x getting the same prediction p̂(x) = q are equal to the prediction vector q:

P(Y = i | p̂(x) = q) = qi for i = 1, . . . , k .
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Reminder: binning needed

For practical purposes, the conditions in these definitions need to be relaxed. This is
where binning comes in.

Once we have the bins, we can draw a reliability diagram as in the two-class case.
For class-wise calibration, we can show per-class reliability diagrams or a single
averaged one.

The degree of calibration is assessed using the gaps in the reliability diagram. All of
this will be elaborated in the next part of the tutorial.
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Important points to remember

Only well-calibrated probability estimates are worthy to be called probabilities:
otherwise they are just scores that happen to be in the [0, 1] range.

Binning will be required in some form:
instance-based probability evaluation metrics such as Brier score or
log-loss always measure calibration plus something else.

In multi-class settings, think carefully about which form of calibration you need:
e.g., confidence-calibration is too weak in a cost-sensitive setting.
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What happens next

14.45 - Telmo Silva-Filho: Evaluation metrics and proper scoring rules
Expected/maximum calibration error; proper scoring rules;
hypothesis test for calibration

15.30 - Break and preparation for hands-on session

15.50 - Hao Song: Calibrators
Binary approaches; multi-class approaches;
regularisation and Bayesian treatments; implementation

16.50 - Miquel Perello-Nieto: Hands-on session

17.30 - Peter Flach, Hao Song: Advanced topics and conclusion
Cost curves; calibrating for F-score; regressor calibration

All times in CEST. We thank Meelis Kull (U Tartu, Estonia) for his help in preparing
this material.
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