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Expected/Maximum calibration error

I As seen in the previous Section, each notion of calibration is related to a reliability
diagram
I This can be used to visualise miscalibration on binned scores

I We will now see how these bins can be used to measure miscalibration
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Toy example

I We start by introducing a toy example:

p̂1 p̂2 p̂3 y

1 1.0 0.0 0.0 1
2 0.9 0.1 0.0 1
3 0.8 0.1 0.1 1
4 0.7 0.1 0.2 1
5 0.6 0.3 0.1 1
6 0.4 0.1 0.5 1
7 1/3 1/3 1/3 1
8 1/3 1/3 1/3 1
9 0.2 0.4 0.4 1
10 0.1 0.5 0.4 1

p̂1 p̂2 p̂3 y

11 0.8 0.2 0.0 2
12 0.7 0.0 0.3 2
13 0.5 0.2 0.3 2
14 0.4 0.4 0.2 2
15 0.4 0.2 0.4 2
16 0.3 0.4 0.3 2
17 0.2 0.3 0.5 2
18 0.1 0.6 0.3 2
19 0.1 0.3 0.6 2
20 0.0 0.2 0.8 2

p̂1 p̂2 p̂3 y

21 0.8 0.2 0.0 3
22 0.8 0.1 0.1 3
23 0.8 0.0 0.2 3
24 0.6 0.0 0.4 3
25 0.3 0.0 0.7 3
26 0.2 0.6 0.2 3
27 0.2 0.4 0.4 3
28 0.0 0.4 0.6 3
29 0.0 0.3 0.7 3
30 0.0 0.3 0.7 3
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Binary-ECE

I We define the expected binary calibration error binary−ECE (Naeini et al., 2015)
as the average gap across all bins in a reliability diagram, weighted by the number
of instances in each bin:

binary−ECE =
M∑

i=1

|Bi |
N
|ȳ(Bi)− p̄(Bi)|,

I Where M and N are the numbers of bins and instances, respectively, Bi is the i-th
probability bin, |Bi | denotes the size of the bin, and p̄(Bi) and ȳ(Bi) denote the
average predicted probability and the proportion of positives in bin Bi
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Binary-MCE

I We can similarly define the maximum binary calibration error binary−MCE as the
maximum gap across all bins in a reliability diagram:

binary−MCE = max
i∈{1,...,M}

|ȳ(Bi)− p̄(Bi)|.
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Binary-ECE using our example

I Let us pretend our example is binary by taking class 1 as positive

p̂1 p̂0 y

1 1.0 0.0 1
2 0.9 0.1 1
3 0.8 0.2 1
4 0.7 0.3 1
5 0.6 0.4 1
6 0.4 0.6 1
7 1/3 2/3 1
8 1/3 2/3 1
9 0.2 0.8 1
10 0.1 0.9 1

p̂1 p̂0 y

11 0.8 0.2 0
12 0.7 0.3 0
13 0.5 0.5 0
14 0.4 0.6 0
15 0.4 0.6 0
16 0.3 0.7 0
17 0.2 0.8 0
18 0.1 0.9 0
19 0.1 0.9 0
20 0.0 1.0 0

p̂1 p̂0 y

21 0.8 0.2 0
22 0.8 0.2 0
23 0.8 0.2 0
24 0.6 0.4 0
25 0.3 0.7 0
26 0.2 0.8 0
27 0.2 0.8 0
28 0.0 1.0 0
29 0.0 1.0 0
30 0.0 1.0 0
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Binary-ECE using our example

I We now separate class 1 probabilities and their corresponding instance labels into
5 bins: [0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8, 1.0]

I Then, we calculate the average probability and the frequency of positives at each
bin

Bi |Bi | p̄(Bi ) ȳ(Bi )

B1 11 0.0, 0.0, 0.0, 0.0, 0.1, 0.1, 0.1, 0.2, 0.2, ... 1.1/11 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 2/11
B2 7 0.3, 0.3, 1/3, 1/3, 0.4, 0.4, 0.4 2.5/7 0, 0, 0, 0, 1, 1, 1 3/7
B3 3 0.5, 0.6, 0.6 1.7/3 0, 0, 1 1/3
B4 7 0.7, 0.7, 0.8, 0.8, 0.8, 0.8, 0.8 5.4/7 0, 0, 0, 0, 0, 1, 1 2/7
B5 2 0.9, 1.0 1.9/2 1, 1 2/2
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These same bins can be used to build a reliability diagram
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Finally, we calculate the binary-ECE

Bi p̄(Bi ) ȳ(Bi ) |Bi |

B1 0.10 0.18 11
B2 0.35 0.43 7
B3 0.57 0.33 3
B4 0.77 0.29 7
B5 0.95 1.00 2

binary−ECE =
M∑

i=1

|Bi |
N
|ȳ(Bi )− p̄(Bi )|

binary−ECE =
11 · 0.08 + 7 · 0.08 + 3 · 0.24 + 7 · 0.48 + 2 · 0.05

30
binary−ECE = 0.1873
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Binary-MCE

I For the binary-MCE, we take the maximum gap between p̄(Bi) and ȳ(Bi):

Bi p̄(Bi ) ȳ(Bi ) |Bi |

B1 0.10 0.18 11
B2 0.35 0.43 7
B3 0.57 0.33 3
B4 0.77 0.29 7
B5 0.95 1.00 2

binary−MCE = max
i∈{1,...,M}

|ȳ(Bi )− p̄(Bi )|

binary−MCE = 0.48

12 / 56



Confidence-ECE

I Confidence-ECE (Guo et al., 2017) was the first attempt at an ECE measure for
multiclass problems

I Here, confidence means the probability given to the winning class, i.e. the highest
value in the predicted probability vector

I We calculate the expected confidence calibration error confidence−ECE as the
binary-ECE of the binned confidence values
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Confidence-MCE

I We can similarly define the maximum confidence calibration error
confidence−MCE as the maximum gap across all bins in a reliability diagram:

confidence−MCE = max
i∈{1,...,M}

|ȳ(Bi)− p̄(Bi)|.
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Confidence-ECE using our example

I First, let us determine the confidence values:

p̂1 p̂2 p̂3 y

1 1.0 0.0 0.0 1
2 0.9 0.1 0.0 1
3 0.8 0.1 0.1 1
4 0.7 0.1 0.2 1
5 0.6 0.3 0.1 1
6 0.4 0.1 0.5 1
7 1/3 1/3 1/3 1
8 1/3 1/3 1/3 1
9 0.2 0.4 0.4 1
10 0.1 0.5 0.4 1

p̂1 p̂2 p̂3 y

11 0.8 0.2 0.0 2
12 0.7 0.0 0.3 2
13 0.5 0.2 0.3 2
14 0.4 0.4 0.2 2
15 0.4 0.2 0.4 2
16 0.3 0.4 0.3 2
17 0.2 0.3 0.5 2
18 0.1 0.6 0.3 2
19 0.1 0.3 0.6 2
20 0.0 0.2 0.8 2

p̂1 p̂2 p̂3 y

21 0.8 0.2 0.0 3
22 0.8 0.1 0.1 3
23 0.8 0.0 0.2 3
24 0.6 0.0 0.4 3
25 0.3 0.0 0.7 3
26 0.2 0.6 0.2 3
27 0.2 0.4 0.4 3
28 0.0 0.4 0.6 3
29 0.0 0.3 0.7 3
30 0.0 0.3 0.7 3
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Confidence-ECE using our example

I We binarise the labels by checking if the classifier predicted the right class:

confidence correct

1.00 1
0.90 1
0.80 1
0.70 1
0.60 1
0.50 0
0.33 1
0.33 1
0.40 0
0.50 0

confidence correct

0.8 0
0.7 0
0.5 0
0.4 0
0.4 0
0.4 1
0.5 0
0.6 1
0.6 0
0.8 0

confidence correct

0.8 0
0.8 0
0.8 0
0.6 0
0.7 1
0.6 0
0.4 0
0.6 1
0.7 1
0.7 1
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Confidence-ECE using our example

I We now separate the confidences into 5 bins:

Bi |Bi | p̄(Bi ) ȳ(Bi )

B1 0
B2 7 1/3, 1/3, 0.4, 0.4, 0.4, 0.4, 0.4 2.7/7 0, 0, 0, 0, 1, 1, 1 3/7
B3 10 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.6, 0.6, ... 5.6/10 0, 0, 0, 0, 0, 0, 0, 1, 1, 1 3/10
B4 11 0.7, 0.7, 0.7, 0.7, 0.7, 0.8, 0.8, 0.8, 0.8, ... 8.3/11 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 5/11
B5 2 0.9, 1.0 1.9/2 1, 1 2/2

I Note that bins that correspond to confidences less than 1/K will always be empty
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The corresponding reliability diagram
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Finally, we calculate the confidence-ECE

Bi p̄(Bi ) ȳ(Bi ) |Bi |

B1 0
B2 0.38 0.43 7
B3 0.56 0.30 10
B4 0.75 0.45 11
B5 0.95 1.00 2

confidence−ECE =
M∑

i=1

|Bi |
N
|ȳ(Bi )− p̄(Bi )|

confidence−ECE =
0 + 7 · 0.05 + 10 · 0.26 + 11 · 0.3 + 2 · 0.05

30
confidence−ECE = 0.2117
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Confidence-MCE

I For the confidence-MCE, we take the maximum gap between p̄(Bi) and ȳ(Bi):

Bi p̄(Bi ) ȳ(Bi ) |Bi |

B1 0
B2 0.38 0.43 7
B3 0.56 0.30 10
B4 0.75 0.45 11
B5 0.95 1.00 2

confidence−MCE = max
i∈{1,...,M}

|ȳ(Bi )− p̄(Bi )|

confidence−MCE = 0.3
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Classwise-ECE

I Confidence calibration only cares about the winning class
I To measure miscalibration for all classes, we can take the average binary-ECE

across all classes
I The contribution of a single class j to this expected classwise calibration error

(classwise−ECE) is called class-j-ECE
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Classwise-ECE

I Formally, classwise−ECE is defined as the average gap across all
classwise-reliability diagrams, weighted by the number of instances in each bin:

classwise−ECE =
1
K

K∑
j=1

M∑
i=1

|Bi,j |
N
|ȳj(Bi,j)− p̄j(Bi,j)|,

I Where Bi,j is the i-th bin of the j-th class, |Bi,j | denotes the size of the bin, and
p̄j(Bi,j) and ȳj(Bi,j) denote the average prediction of class j probability and the
actual proportion of class j in the bin Bi,j
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Classwise-MCE

I Similarly the maximum classwise calibration error (classwise−MCE) is defined as
the maximum gap across all bins and all classwise-reliability diagrams:

classwise−MCE = max
j∈{1,...,K} i∈{1,...,M}

|ȳj(Bi,j)− p̄j(Bi,j)|.
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Classwise-ECE using our example

I We have already calculated class-1-ECE (0.1873) in our binary-ECE example
I Now we need to do the same for classes 2 and 3

Bi,2 |Bi,2| p̄(Bi,2) ȳ(Bi,2)

B1,2 15 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.1, 0.1, 0.1, ... 1.5/15 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 5/15
B2,2 12 0.3, 0.3, 0.3, 0.3, 0.3, 1/3, 1/3, 0.4, 0.4... 4.2/12 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 4/12
B3,2 3 0.5, 0.6, 0.6 1.7/3 0, 0, 1 1/3
B4,2 0
B5,2 0

Bi,3 |Bi,3| p̄(Bi,3) ȳ(Bi,3)

B1,3 11 0.0, 0.0, 0.0, 0.0, 0.1, 0.1, 0.1, 0.2, 0.2, ... 1.1/11 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 4/11
B2,3 11 0.3, 0.3, 0.3, 0.3, 1/3, 1/3, 0.4, 0.4, 0.4... 3.9/11 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 2/11
B3,3 4 0.5, 0.5, 0.6, 0.6 2.2/4 0, 0, 0, 1 1/4
B4,3 4 0.7, 0.7, 0.7, 0.8 2.9/4 0, 1, 1, 1 3/4
B5,3 0
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Each class has its own reliability diagram
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Now we calculate class-2-ECE and class-3-ECE

class−2−ECE =
M∑

i=1

|Bi,2|
N
|ȳ(Bi,2)− p̄(Bi,2)|

class−2−ECE =
15 · 0.23 + 12 · 0.02 + 3 0̇.24 + 0 + 0

30
class−2−ECE = 0.147

class−3−ECE =
M∑

i=1

|Bi,3|
N
|ȳ(Bi,3)− p̄(Bi,3)|

class−3−ECE =
11 · 0.26 + 11 · 0.17 + 4 · 0.3 + 4 · 0.03 + 0

30
class−3−ECE = 0.2017
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Finally, we take the mean of the 3 ECEs

classwise−ECE =
1
K

K∑
j=1

M∑
i=1

|Bi,j |
N
|ȳj(Bi,j)− p̄j(Bi,j)|

classwise−ECE =
0.1873 + 0.147 + 0.2017

3
classwise−ECE = 0.1787
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Classwise-MCE

I For the classwise-MCE, we take the maximum gap between p̄(Bi,j) and ȳ(Bi,j)
across all bins of all classes:

Bi,1 p̄(Bi,1) ȳ(Bi,1) |Bi,1|

B1,1 0.10 0.18 11
B2,1 0.35 0.43 7
B3,1 0.57 0.33 3
B4,1 0.77 0.29 7
B5,1 0.95 1.00 2

Bi,2 p̄(Bi,2) ȳ(Bi,2) |Bi,2|

B1,2 0.10 0.33 15
B2,2 0.35 0.33 12
B3,2 0.57 0.33 3
B4,2 0
B5,2 0

Bi,3 p̄(Bi,3) ȳ(Bi,3) |Bi,3|

B1,3 0.10 0.36 11
B2,3 0.35 0.18 11
B3,3 0.55 0.25 4
B4,3 0.72 0.75 4
B5,3 0

classwise−MCE = max
j∈{1,...,K} i∈{1,...,M}

|ȳj(Bi,j)− p̄j(Bi,j)|

classwise−MCE = 0.48
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Optimising ECE can be as simple as predicting the overall class
distribution, regardless of the given instance
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What about multiclass-ECE?

I True multiclass-ECE is still an open problem
I With large numbers of classes, the number of bins can be prohibitively high

I Most bins would be empty

I Therefore, we turn to proper scoring rules
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Proper scoring rules

I We now talk about loss measures (φ̆) that prefer Bayes-optimal classifiers over
other classifiers

I For any given P(X,Y ), x ∈ X , the following is satisfied:

Ey∼P(Y |X=x)

[
φ̆
(
q, y

)]
≥ Ey∼P(Y |X=x)

[
φ̆
(
P(Y | X = x), y

)]

I And the left side is equal to right side if and only if q = P(Y | X = x)

I P(Y | X = x) is a vector with elements P(Y = j | X = x)
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Proper scoring rules

I Proper scoring rules are calculated at the item level, while ECE measures are
averages across bins

I Think of them as putting each item in its separate bin, then computing the
average of some loss for each predicted probability and its corresponding
observed label
I Instead of the absolute difference, as in ECE, this loss can be the quadratic error or

the Kullback–Leibler divergence, which have better mathematical properties
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Brier score/Quadratic error/Euclidean distance

φ̆BS

(
Q, y

)
=

1
N

N∑
n=1

K∑
j=1

(
I(yn = j)− qn,j

)2

I We can easily see that this value is not minimised by constantly predicting the
class distribution, as in ECE

Q =

[
0.5 0.5
0.5 0.5

]
y = [1, 2]

φ̆BS

(
Q, y

)
=

(1− 0.5)2 + (0− 0.5)2 + (0− 0.5)2 + (1− 0.5)2

2

φ̆BS

(
Q, y

)
= 0.5
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Log-loss/Cross entropy

φ̆LL

(
Q, y

)
= − 1

N

N∑
n=1

K∑
j=1

I(yn = j) · log(qn,j)

I Frequently used to as the training loss of machine learning methods, such as
neural networks

I Only penalises the probability given to the true class

φ̆LL

(
Q, y

)
= − (1 · log(0.5) + 0 · log(0.5) + 0 · log(0.5) + 1 · log(0.5))

2

φ̆LL

(
Q, y

)
= 0.6931
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Let us rewind a bit

I As mentioned before, a model that always outputs the class proportion will have a
perfect ECE of 0, but its log-loss is not 0 (in fact, it’s 0.6365)

Q =


2/3 1/3
2/3 1/3

...
...

2/3 1/3


y = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
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An evaluation trade-off

I What happens if our model gives 0.9 probability to the instances’ true classes?

accuracy = 1

ECE = 0.1

log-loss = 0.1054
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Proper scoring rule decomposition

I ECE increased (0 to 0.1), but log-loss decreased (0.6365 to 0.1054)
I So why did log-loss decrease?

I Because proper scoring rules do not measure only calibration
I In fact, they can be decomposed into terms with different interpretations (Kull and

Flach, 2015)
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Proper scoring rule decomposition

I An intuitive way to decompose proper scoring rules is into refinement and
calibration losses: E

[
φ̆
]

= RL + CL
I Refinement loss: is the loss due to producing the same probability for instances from

different classes
I Calibration loss: is the loss due to the difference between the probabilities predicted

by the model and the proportion of positives among instances with the same output
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Proper scoring rule decomposition

I An intuitive way to decompose proper scoring rules is into refinement and
calibration losses: E

[
φ̆
]

= RL + CL
I Refinement loss: is the loss due to producing the same probability for instances from

different classes (the second model reduces this loss)
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Proper scoring rule decomposition

I An intuitive way to decompose proper scoring rules is into refinement and
calibration losses: E

[
φ̆
]

= RL + CL
I Calibration loss: is the loss due to the difference between the probabilities predicted

by the model and the proportion of positives among instances with the same output
(the second model increases this loss)
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Proper scoring rule decomposition

I Since we don’t usually know the real score distribution, we would need to once
again rely on binning if we wanted to actually estimate refinement and calibration
losses

I Additionally, the terms are calculated (estimated) differently, depending on the
proper scoring rule

I Fun fact: the loss of the optimal classifier is not necessarily 0
I This is due to irreducible loss, which is only 0 if the attributes provide enough

information to uniquely determine the instances’ right label Y, with probability 1 (Kull
and Flach, 2015)
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Hypothesis test for calibration

I Given a classifier p̂, we can check if its predictions for a test set
{(x1, y1), . . . , (xN , yN)} are calibrated according to an arbitrary loss measure
φ(p̂(Xtest), y test), such as ECE, log-loss or Brier score
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Calculating the p-value

I We use a simple resampling-based hypothesis test under the null hypothesis that
the classifier’s outputs are calibrated (Vaicenavicius et al., 2019)

I First, we generate S bootstrapped label sets ys, s ∈ {1, . . . ,S}, such that each
ys,i is sampled from p̂(x̂ i)

I Then we calculate φ(p̂(Xtest), ys) for each label set s
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Calculating the p-value

I We then calculate the p-value as:

P
(
φ(p̂(Xtest), ys) > φ(p̂(Xtest), y test)

)
= P

(
φ(p̂(Xtest), ys) > 0.32

)
(1)
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Calculating the p-value

I We then calculate the p-value as:

P
(
φ(p̂(Xtest), ys) > 0.32

)
≈ 0.26 (2)

I We cannot reject the null hypothesis here
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Calculating the p-value

I Now suppose the original labels were such that our classifier’s classwise-ECE had
a value of 0.37

P
(
φ(p̂(Xtest), ys) > 0.37

)
. (3)
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Calculating the p-value

I Now suppose that our classifier’s classwise-ece had a value of 0.37

P
(
φ(p̂(Xtest), ys) > 0.37

)
≈ 0.01 (4)
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Calculating the p-value

I Now suppose the original labels were such that our classifier’s classwise-ece had
a value of 0.37

P
(
φ(p̂(Xtest), ys) > 0.37

)
≈ 0.01 (5)

I We reject the null hypothesis: the model is miscalibrated
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Summary

I There are various ways to visualise and quantify calibration
I ECE measures aim at producing an aggregate measure of the visual information

provided in reliability diagrams
I Thus, their optimisation is not guaranteed to produce desirable classifiers

I Proper scoring rules measure different aspects of probability correctness
I They have been used as training losses in classifier training for a while
I But they cannot tell “where” the model is more miscalibrated

I Finally, the hypothesis test for calibration can help determine if a particular loss
value means that the classifier is calibrated or not
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What happens next

15.30 - Break and preparation for hands-on session

15.50 - Hao Song: Calibrators
Binary approaches; multi-class approaches;
regularisation and Bayesian treatments; implementation

16.50 - Miquel Perello-Nieto: Hands-on session

17.30 - Peter Flach, Hao Song: Advanced topics and conclusion
Cost curves; calibrating for F-score; regressor calibration

All times in CEST.
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