Calibration methods
- class pycalib.models.calibrators.BinningCalibration(n_bins=10, strategy: Literal['uniform', 'quantile', 'kmeans'] = 'uniform', alpha=1.0)
Probability calibration with Binning calibration.
- Parameters:
- n_bins: integer or list of integers
If integer, the number of bins to create in the score space in order to compute the true fraction of positives during the training. If a list of integers, a BinningCalibration method will be fitted for each number of bins, and the best calibrator evaluated with the validation set will be selected as final calibrator.
- strategy: str {‘uniform’, ‘quantile’, ‘kmeans’}
If uniform: for equal width bins If quantile: for equal frequency bins If kmeans: for each bin with same nearest center to a 1D k-means
- alpha: float
Laplace smoothing (x + a)/(N + 2a)
References
[1]Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001
- Attributes:
- classes_array, shape (n_classes)
The class labels.
- calibrated_classifiers_: list (len() equal to cv or 1 if cv == “prefit”)
The list of calibrated classifiers, one for each cross-validation fold, which has been fitted on all but the validation fold and calibrated on the validation fold.
Methods
fit
(scores, y[, X_val, y_val])Score=0 corresponds to y=0, and score=1 to y=1 Parameters ---------- scores : array-like, shape = [n_samples,] Data. y : array-like, shape = [n_samples, ] Labels. Returns ------- self.
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
score
(X, y[, sample_weight])Return the coefficient of determination of the prediction.
set_fit_request
(*[, X_val, scores, y_val])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
set_predict_proba_request
(*[, scores])Request metadata passed to the
predict_proba
method.set_predict_request
(*[, scores])Request metadata passed to the
predict
method.set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.predict
predict_proba
- fit(scores, y, X_val=None, y_val=None, *args, **kwargs)
Score=0 corresponds to y=0, and score=1 to y=1 Parameters ———- scores : array-like, shape = [n_samples,]
Data.
- yarray-like, shape = [n_samples, ]
Labels.
Returns
self
- set_fit_request(*, X_val: bool | None | str = '$UNCHANGED$', scores: bool | None | str = '$UNCHANGED$', y_val: bool | None | str = '$UNCHANGED$') BinningCalibration
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- X_valstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
X_val
parameter infit
.- scoresstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
scores
parameter infit
.- y_valstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
y_val
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_predict_proba_request(*, scores: bool | None | str = '$UNCHANGED$') BinningCalibration
Request metadata passed to the
predict_proba
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict_proba
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict_proba
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- scoresstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
scores
parameter inpredict_proba
.
- Returns:
- selfobject
The updated object.
- set_predict_request(*, scores: bool | None | str = '$UNCHANGED$') BinningCalibration
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- scoresstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
scores
parameter inpredict
.
- Returns:
- selfobject
The updated object.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') BinningCalibration
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.
- class pycalib.models.calibrators.CalibratedModel(base_estimator=None, calibrator=None, fit_estimator=True)
Initialize a Calibrated model (classifier + calibrator)
- Parameters:
- base_estimatorinstance BaseEstimator
The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs. If cv=prefit, the classifier must have been fit already on data.
- calibratorinstance BaseEstimator
The calibrator to use.
Methods
fit
(X, y[, X_val, y_val])Fit the calibrated model
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict the target of new samples.
Posterior probabilities of classification
score
(X, y[, sample_weight])Return the mean accuracy on the given test data and labels.
set_fit_request
(*[, X_val, y_val])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.- fit(X, y, X_val=None, y_val=None, *args, **kwargs)
Fit the calibrated model
- Parameters:
- Xarray-like, shape (n_samples, n_features)
Training data.
- yarray-like, shape (n_samples, n_classes)
Target values.
- Returns:
- selfobject
Returns an instance of self.
- predict(X)
Predict the target of new samples. Can be different from the prediction of the uncalibrated classifier.
- Parameters:
- Xarray-like, shape (n_samples, n_features)
The samples.
- Returns:
- Carray, shape (n_samples,)
The predicted class.
- predict_proba(X)
Posterior probabilities of classification
This function returns posterior probabilities of classification according to each class on an array of test vectors X.
- Parameters:
- Xarray-like, shape (n_samples, n_features)
The samples.
- Returns:
- Carray, shape (n_samples, n_classes)
The predicted probas. Can be exact zeros.
- set_fit_request(*, X_val: bool | None | str = '$UNCHANGED$', y_val: bool | None | str = '$UNCHANGED$') CalibratedModel
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- X_valstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
X_val
parameter infit
.- y_valstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
y_val
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') CalibratedModel
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.
- class pycalib.models.calibrators.IsotonicCalibration
Methods
fit
(scores, y, *args, **kwargs)Score=0 corresponds to y=0, and score=1 to y=1 Parameters ---------- scores : array-like, shape = [n_samples,] Data. y : array-like, shape = [n_samples, ] Labels. Returns ------- self.
fit_transform
(X[, y])Fit to data, then transform it.
get_feature_names_out
([input_features])Get output feature names for transformation.
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(scores, *args, **kwargs)Predict new data by linear interpolation.
score
(X, y[, sample_weight])Return the coefficient of determination of the prediction.
set_fit_request
(*[, scores])Request metadata passed to the
fit
method.set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_predict_proba_request
(*[, scores])Request metadata passed to the
predict_proba
method.set_predict_request
(*[, scores])Request metadata passed to the
predict
method.set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.set_transform_request
(*[, T])Request metadata passed to the
transform
method.transform
(T)Transform new data by linear interpolation.
predict_proba
- fit(scores, y, *args, **kwargs)
Score=0 corresponds to y=0, and score=1 to y=1 Parameters ———- scores : array-like, shape = [n_samples,]
Data.
- yarray-like, shape = [n_samples, ]
Labels.
Returns
self
- predict(scores, *args, **kwargs)
Predict new data by linear interpolation.
- Parameters:
- Tarray-like of shape (n_samples,) or (n_samples, 1)
Data to transform.
- Returns:
- y_predndarray of shape (n_samples,)
Transformed data.
- set_fit_request(*, scores: bool | None | str = '$UNCHANGED$') IsotonicCalibration
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- scoresstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
scores
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_predict_proba_request(*, scores: bool | None | str = '$UNCHANGED$') IsotonicCalibration
Request metadata passed to the
predict_proba
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict_proba
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict_proba
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- scoresstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
scores
parameter inpredict_proba
.
- Returns:
- selfobject
The updated object.
- set_predict_request(*, scores: bool | None | str = '$UNCHANGED$') IsotonicCalibration
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- scoresstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
scores
parameter inpredict
.
- Returns:
- selfobject
The updated object.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') IsotonicCalibration
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.
- set_transform_request(*, T: bool | None | str = '$UNCHANGED$') IsotonicCalibration
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- Tstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
T
parameter intransform
.
- Returns:
- selfobject
The updated object.
- class pycalib.models.calibrators.LogisticCalibration(C=1.0, solver='lbfgs', multi_class='multinomial', log_transform=True)
Probability calibration with Logistic Regression aka Platt’s scaling
- Parameters:
- C: integer
- solver: str ‘lbfgs’
- multi_class: str ‘multinomial’
- log_transform: boolean True
References
[3]Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999)
- Attributes:
- classes_array, shape (n_classes)
The class labels.
- calibrated_classifiers_: list (len() equal to cv or 1 if cv == “prefit”)
The list of calibrated classifiers, one for each cross-validation fold, which has been fitted on all but the validation fold and calibrated on the validation fold.
Methods
decision_function
(X)Predict confidence scores for samples.
densify
()Convert coefficient matrix to dense array format.
fit
(scores, y[, X_val, y_val])Fit the model according to the given training data.
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(scores, *args, **kwargs)Predict class labels for samples in X.
predict_log_proba
(X)Predict logarithm of probability estimates.
predict_proba
(scores, *args, **kwargs)Probability estimates.
score
(X, y[, sample_weight])Return the mean accuracy on the given test data and labels.
set_fit_request
(*[, X_val, scores, y_val])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
set_predict_proba_request
(*[, scores])Request metadata passed to the
predict_proba
method.set_predict_request
(*[, scores])Request metadata passed to the
predict
method.set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.sparsify
()Convert coefficient matrix to sparse format.
- fit(scores, y, X_val=None, y_val=None, *args, **kwargs)
Fit the model according to the given training data.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and n_features is the number of features.
- yarray-like of shape (n_samples,)
Target vector relative to X.
- sample_weightarray-like of shape (n_samples,) default=None
Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight.
New in version 0.17: sample_weight support to LogisticRegression.
- Returns:
- self
Fitted estimator.
Notes
The SAGA solver supports both float64 and float32 bit arrays.
- predict(scores, *args, **kwargs)
Predict class labels for samples in X.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The data matrix for which we want to get the predictions.
- Returns:
- y_predndarray of shape (n_samples,)
Vector containing the class labels for each sample.
- predict_proba(scores, *args, **kwargs)
Probability estimates.
The returned estimates for all classes are ordered by the label of classes.
For a multi_class problem, if multi_class is set to be “multinomial” the softmax function is used to find the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of each class assuming it to be positive using the logistic function. and normalize these values across all the classes.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Vector to be scored, where n_samples is the number of samples and n_features is the number of features.
- Returns:
- Tarray-like of shape (n_samples, n_classes)
Returns the probability of the sample for each class in the model, where classes are ordered as they are in
self.classes_
.
- set_fit_request(*, X_val: bool | None | str = '$UNCHANGED$', scores: bool | None | str = '$UNCHANGED$', y_val: bool | None | str = '$UNCHANGED$') LogisticCalibration
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- X_valstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
X_val
parameter infit
.- scoresstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
scores
parameter infit
.- y_valstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
y_val
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_predict_proba_request(*, scores: bool | None | str = '$UNCHANGED$') LogisticCalibration
Request metadata passed to the
predict_proba
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict_proba
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict_proba
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- scoresstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
scores
parameter inpredict_proba
.
- Returns:
- selfobject
The updated object.
- set_predict_request(*, scores: bool | None | str = '$UNCHANGED$') LogisticCalibration
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- scoresstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
scores
parameter inpredict
.
- Returns:
- selfobject
The updated object.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') LogisticCalibration
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.
- class pycalib.models.calibrators.SigmoidCalibration
Methods
fit
(scores, y, *args, **kwargs)Fit the model using X, y as training data.
get_metadata_routing
()Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(*args, **kwargs)Predict new data by linear interpolation.
score
(X, y[, sample_weight])Return the coefficient of determination of the prediction.
set_fit_request
(*[, scores])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
set_predict_proba_request
(*[, scores])Request metadata passed to the
predict_proba
method.set_predict_request
(*[, T])Request metadata passed to the
predict
method.set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.predict_proba
- fit(scores, y, *args, **kwargs)
Fit the model using X, y as training data.
- Parameters:
- Xarray-like of shape (n_samples,)
Training data.
- yarray-like of shape (n_samples,)
Training target.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
- Returns:
- selfobject
Returns an instance of self.
- predict(*args, **kwargs)
Predict new data by linear interpolation.
- Parameters:
- Tarray-like of shape (n_samples,)
Data to predict from.
- Returns:
- T_ndarray of shape (n_samples,)
The predicted data.
- set_fit_request(*, scores: bool | None | str = '$UNCHANGED$') SigmoidCalibration
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- scoresstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
scores
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_predict_proba_request(*, scores: bool | None | str = '$UNCHANGED$') SigmoidCalibration
Request metadata passed to the
predict_proba
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict_proba
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict_proba
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- scoresstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
scores
parameter inpredict_proba
.
- Returns:
- selfobject
The updated object.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') SigmoidCalibration
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.