.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/xmpl_quickstart.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_xmpl_quickstart.py: ============================= Quickstart ============================= This example shows a simple comparison of the expected calibration error of a non-calibrated method against a calibrated method. .. GENERATED FROM PYTHON SOURCE LINES 9-14 .. code-block:: Python # Author: Miquel Perello Nieto # License: new BSD print(__doc__) .. GENERATED FROM PYTHON SOURCE LINES 15-16 First choose a classifier .. GENERATED FROM PYTHON SOURCE LINES 16-21 .. code-block:: Python from sklearn.naive_bayes import GaussianNB clf = GaussianNB() .. GENERATED FROM PYTHON SOURCE LINES 22-23 And a dataset .. GENERATED FROM PYTHON SOURCE LINES 23-36 .. code-block:: Python from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split X, y = make_classification( n_samples=100000, n_features=20, n_informative=4, n_redundant=4, random_state=42 ) from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, y) .. GENERATED FROM PYTHON SOURCE LINES 37-38 We can see how calibrated it is after training .. GENERATED FROM PYTHON SOURCE LINES 38-47 .. code-block:: Python clf.fit(X_train, Y_train) n_correct = sum(clf.predict(X_test) == Y_test) n_test = Y_test.shape[0] print(f"The classifier gets {n_correct} correct " f"predictions out of {n_test}") .. rst-class:: sphx-glr-script-out .. code-block:: none The classifier gets 17938 correct predictions out of 25000 .. GENERATED FROM PYTHON SOURCE LINES 48-49 We can asses the confidence expected calibration error .. GENERATED FROM PYTHON SOURCE LINES 49-58 .. code-block:: Python from pycalib.metrics import conf_ECE scores = clf.predict_proba(X_test) cece = conf_ECE(Y_test, scores, bins=15) print(f"The classifier gets a confidence expected " f"calibration error of {cece:0.2f}") .. rst-class:: sphx-glr-script-out .. code-block:: none The classifier gets a confidence expected calibration error of 0.13 .. GENERATED FROM PYTHON SOURCE LINES 59-60 Let's look at its reliability diagram .. GENERATED FROM PYTHON SOURCE LINES 60-66 .. code-block:: Python from pycalib.visualisations import plot_reliability_diagram plot_reliability_diagram(labels=Y_test, scores=scores, show_histogram=True, show_bars=True, show_gaps=True) .. image-sg:: /examples/images/sphx_glr_xmpl_quickstart_001.png :alt: xmpl quickstart :srcset: /examples/images/sphx_glr_xmpl_quickstart_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 67-68 We can see how a calibration can improve the conf-ECE .. GENERATED FROM PYTHON SOURCE LINES 68-72 .. code-block:: Python from pycalib.models import IsotonicCalibration cal = IsotonicCalibration() .. GENERATED FROM PYTHON SOURCE LINES 73-75 Now we can put together a probabilistic classifier with the chosen calibration method .. GENERATED FROM PYTHON SOURCE LINES 75-81 .. code-block:: Python from pycalib.models import CalibratedModel cal_clf = CalibratedModel(base_estimator=clf, calibrator=cal, fit_estimator=False) .. GENERATED FROM PYTHON SOURCE LINES 82-83 Now you can train both classifier and calibrator all together. .. GENERATED FROM PYTHON SOURCE LINES 83-96 .. code-block:: Python cal_clf.fit(X_train, Y_train) n_correct = sum(cal_clf.predict(X_test) == Y_test) print(f"The calibrated classifier gets {n_correct} " f"correct predictions out of {n_test}") scores_cal = cal_clf.predict_proba(X_test) cece = conf_ECE(Y_test, scores_cal, bins=15) print(f"The calibrated classifier gets a confidence " f"expected calibration error of {cece:0.2f}") .. rst-class:: sphx-glr-script-out .. code-block:: none The calibrated classifier gets 18213 correct predictions out of 25000 The calibrated classifier gets a confidence expected calibration error of 0.01 .. GENERATED FROM PYTHON SOURCE LINES 97-98 Now you can train both classifier and calibrator all together. .. GENERATED FROM PYTHON SOURCE LINES 98-103 .. code-block:: Python from pycalib.visualisations import plot_reliability_diagram plot_reliability_diagram(labels=Y_test, scores=scores_cal, show_histogram=True, show_bars=True, show_gaps=True) .. image-sg:: /examples/images/sphx_glr_xmpl_quickstart_002.png :alt: xmpl quickstart :srcset: /examples/images/sphx_glr_xmpl_quickstart_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none
.. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.712 seconds) .. _sphx_glr_download_examples_xmpl_quickstart.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/perellonieto/pycalib/gh-pages?filepath=notebooks/examples/xmpl_quickstart.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: xmpl_quickstart.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: xmpl_quickstart.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_